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Abstract 

Surface mount components are commonly evaluated for out-of-plane warpage levels across reflow temperatures.  Decision 

making from these measurements is primarily based on signed warpage of a single component surface, per industry 

standards.  However, signed warpage as a gauge can mislead users when surface shapes are complex, or direction of warpage 

is uncertain.  The presented case study analyzes a range of common surface mount components for signed warpage.  This 

wide ranging case study is used to create newly proposed methods for further defining and characterizing surface warpage in 

a quantitative manner. 

Analysis of the case study data focuses on two related surface parameters: signed warpage Signal Strength and surface shape 

naming.  Signal Strength is used to classify samples that are in “transition” between positive and negative warpage directions.  

New methods are shown to represent these transition areas in signed warpage graphs.  Surface shape naming is used to 

further classify surface types, wherein correlation between shape name and surface mount defects are discussed.  Algorithms 

for calculation of Signal Strength and classifying shape names are offered.  Real world examples are used to determine 

appropriate thresholds for sign transitions and shape names in said algorithms.  The study proposes a new, industry wide, 

approach to how companies present component warpage data. 

Introduction 

Volume and demand for thermal warpage data continues to increase in the microelectronics industry.  However, quantitative 

methods to effectively describe the warpage of a surface remain inadequate.  Generically, two methods exist to quantify a 3-

dimensional surface shape.  One method is to make decisions based on a signed warpage value, which is essentially 

coplanarity with a positive or negative direction assigned.  This gives users a numeric answer; industry standards exist from 

both JEDEC (JESD22-B112A) [1] and JEITA (ED-7306) [2] discussing how to quantify surface shape for BGAs and LGAs.  

Conversely, users can visually inspect surface data by looking at a detailed 3D rendering or a 2D diagonal line plot across the 

package surface.  On the PCB side of the attachment interface, IPC-9641[3] establishes the how, though not the quantity, for 

warpage measurement over temperature.  Whenever considering component warpage, the warpage of the attaching interface 

should not be ignored.  In fact, the paper “PCB Dynamic Coplanarity at Elevated Temperatures” concludes that “…IPC and 

JEDEC form a joint evaluation WG to analyze the Dynamic Coplanarity specification and jointly set the requirements for 

board and package.” [4] 

Much of the basis for this case study was established in a previous paper “Improvements in Decision Making Criteria for 

Thermal Warpage” [5].  This paper goes into further detail on reasons why a new approach to quantifying surface warpage is 

being pursued.  Issues discussed in this paper are not covered in detail, but key points and conclusions, which are critical to 

this discussion, are presented in the remainder of this introduction.  

The current standards from JEDEC [1] and JEITA [2] have specific weaknesses for assigning warpage direction, generically 

referred to as signed warpage.  The sign for this gauge is based on the normalized diagonal lines of the surface.  An improved 

algorithm for signed warpage, JEDEC Full Field Signed Warpage (JJFSW), is used as part of the approach to this study.  The 

JFFSW gauge is less sensitive to noise and considers the full field area of the sample.  The mathematical concept behind the 

JFFSW approach, of using 2nd order polynomial fit data, is used extensively throughout this study. 

The reason behind the need for the presented solutions comes from the confusion caused by samples changing sign direction.  

Regardless of the gauge used to determine signed warpage, simplifying a 3D shape to a positive or negative will lead to cases 

where the equation generates an answer near zero and the surface is neither very positive nor negative in shape.  These data 

sets get reported in signed warpage over temperature graphs where signed warpage seems to flip from positive to negative, 

with little explanation as to the cause.  This leads to an inaccurate impression of the surface shape, when considering the data 

without the full graphical rending, as is commonly necessary when dealing with larger volumes. 
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The previous paper also established a new gauge, Signal Strength (SS).  This gauge defines the “amount” that a surface is 

positive or negative.  Two gauges are presented in the previous paper [5], one based on signed warpage and diagonals, and 

the other based on JFFSW and 2nd order polynomial fits.  For the purpose of this study the Signal Strength gauge based 

JFFSW is only considered.  Derivation of this gauge is not covered here.  However, this gauge will be used in multiple 

sections in the study, so it has been provided below, shown as a percentage. 

𝑆𝑆 = 𝐴𝐵𝑆 (
𝑒𝑚2+𝑓𝑛2

4∗𝑐𝑜𝑝𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦
) ∗ 100%       (1) 

…where e and f are coefficients of the x2 and y2, respectively, in a 2nd order polynomial fit.  Terms m and n are x and y 

dimensions of the surface expressed in pixels or quantity of data points.  These variables are used throughout the paper and 

maintain the same meaning. 

“Improvements in Decision Making Criteria for Thermal Warpage” [5] also takes a first pass at assigning a name to a shape 

based on the same e, f, m, and n terms from Equation 1.  Some of the shape name concepts originated in an iNEMI statement 

of work. [6] An early concept image is shown in Figure 1a.  From these concepts specific rules and shape names were 

established.  A graphical representation correlated the shape names to 𝑒𝑚2and 𝑓𝑛2 terms is shown in Figure 1b.   

  

Figure 1a. Original Shape Concept   Figure 1b.  Original Shape Rules 

The original study goes on to consider the “dxy” term of the 2nd order polynomial as well, which affects the visual “twist” of 

the surface.  These definitions were originally chosen on observation of a small subset of samples, to present a general 

concept.  Whereas this study goes on to study a larger subset of real world samples and refines these concepts to an 

established proposal for industry use. 

Case Study Samples and Test Methods 

The samples chosen for the case study as well as testing methods are described here, fairly generically, for proprietary 

reasons. 

 Type of samples which were included in this analysis: 

o BoC, 1DP 7.5 X 13.5mm 

o CoB, 2DP 13.5 X 13.5mm 

o Large FBGA, 1DP 11 x 18.5mm 

o MCP, 5DP 11.5 x 13.0mm 

o PoP, 1DP 14 x 14mm 

 

These samples were chosen due to the varied nature of the devices.  We the authors also utilized a large enough sample size 

such that statistical validity could be gained and assured for the study.  Numerous sample types were used to increase not 

only the span and applicability of the model(s), but also to increase the accuracy of our shape naming. 
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Since the focus of the effort included a broad range of package types, the validity of the study carries more merit regarding 

soundness. 

The samples were measured using the outline below.  This is a short description; however, it should be assumed that details 

of the actual processing are not included here for proprietary concerns. 

o Preconditioning was done following the manufacturing flow. 

o Parts were measured ball side, with no solder balls 

o Data was measured from 30C to 260C and back to 30C 

o Numerous samples were used (samples sizes, not n=1) 

o No more than 7 samples were measured at one time 

Classifying Warpage Sign Using New “3S Warpage” Gauge 

“3S Warpage” is short for “Signal Strength Signed Warpage”, which could more accurately be described as JEDEC Full 

Field Signed Warpage, also considering Signal Strength.  “3S” could also be taken to mean 3 “signs”: positive, negative, and 

indeterminate.  As is discussed in the introductory section of this paper a common cause of confusion is suddenly changing 

sign direction.  Whereas signed warpage and JFFSW gauges put samples into two categories, positive and negative, 3S 

Warpage still uses the coplanarity value but has 3 categories for shape direction.  The categories are defined as positive, 

negative, and “transition”.  The transition surface indicates a sample has low Signal Strength and is neither very positive in 

warpage direction nor very negative, thus the shape direction is indeterminate or in transition.  During a thermal cycle, many 

samples will transition between a positive and negative shape during heating.  However, due to sample to sample variation, 

the measurement during which this transition occurs can vary.  Different samples will transition between positive and 

negative at different temperature points, often with very little difference between their shapes. 

From the case study data, Table 1 provides a good example of this concept.  These examples, along with others from the case 

study, are used to experimentally establish a logical changeover point between positive/negative and transition surfaces.  

Note that sign convention depends on the orientation of the samples during measurement.  In Table 1 the samples are 

correctly labeled to the sign convention as positive or negative, when measured in the “dead bug” position.  The gauge 

footers in the remainder of the report ignore the measurement orientation and will be shown inverted when measured “dead 

bug”. 

Table 1: Example Positive, Negative, and Transition Surfaces from Case Study 

 Positive Transition Negative 

CoB, 2DP 13.5 X 

13.5mm 

 

 

 

 

 

 

MCP, 5DP 11.5 x 

13.0mm 

 

 

 

 

 

 

 

  



 

*Originally published in IPC APEX 2017 Proceedings   

PoP, 1DP 14 x 14mm 
 

 

 

 

 

 

 

Historically all of the transition surfaces shown in Table 1 were forced to be defined as positive or negative.  Another 

example from the case study is shown in Figure 12a and 2b.  A transition from JFFSW of +21 to -23 microns could be 

perceived as a 44 micron change in shape.  From the JFFSW data alone this is a valid hypothesis.  However, visual inspection 

of these two samples, shown graphed in 3D space on the same scale, indicates minimal difference between the two sample 

shapes.  When dealing with a sample transitioning between positive and negative shape directions, the shape type more 

typically does not show a clear shape direction.   

In the case of Figure 2a and 2b the visual appearance is very similar, the shape direction is unclear, and consequently the 

Signal Strength of each data set is low, 2% and 6% for Sample 1 and Sample 2, respectively.  The Signal Strength gauge, 

defined in Equation 1, is used to better define the direction of warpage.  Considering the full range of data taken in the case 

study, the new transition surface classification is defined as a surface with Signal Strength ≤ 25%.  This transition threshold 

value was changed from 35%, using the same math, based on the feedback from the experimental data of this case study. 

The next question that arises from having this new data is how to visually represent the information on a graph.  Figure 3 

shows the current approach with JFFSW.  Figure 4 shows the proposed method to graph this information with 3S Warpage.  

For the transition surfaces a “candlestick” style area is used between the positive and negative range taken up by the 

transition surface.  The line connecting the different data points to a transition surface will always rest at 0 microns on the Y 

axis, as the center point of the transition “candlestick” will always be 0. 

 Figure 2a. CoB Sample 1, 150°C Cooling      Figure 2b. CoB Sample 2, 150°C Cooling 
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Figure 3. JFFSW, 5 Chip on Board Samples 

 
Figure 4. 3S Warpage, 5 Chip on Board Samples 

In more extreme cases the swap from positive to negative can further misrepresent the difference in two sample shapes, as in 

the example from “Improvements in Decision Making Criteria for Thermal Warpage” [5], seen in Figures 5, 6a and 6b. 
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Figure 5. JFFSW, Sign Confusion Case [5] 

 

Figure 6a. Negative Saddle [5]    Figure 6b. Positive Saddle [5] 

Certainly the sample surfaces from Figure 6a and 6b should not be interpreted as having a difference of 202 microns, which 

is the difference in their signed warpage.  This new approach including transition surfaces will reduce confusion between 

companies and users attempting to communicate sample thermal warpage.  3S Warpage stands alone as a proposal to 

improve thermal warpage interpretation and decision making.  However, some of the same concepts can be taken a step 

further and leads to classifying shape types by name. 

Refining Shape Naming Based on Case Study Examples 

Initial concepts for shape naming put samples into 4 general categories: planar/complex, saddle, pipe, and dome/bowl.  

Realistically, samples will have any number of surface contours, but these general categories defined a realistic starting point.  

In further efforts it became straight forward to give the saddle and pipe categories an X and Y direction.  The final goal is to 

understand how surfaces fit together in SMT.  Thus two “pipe” samples with equal JFFSW values would conceptually fit 

well together, this assumption would only hold true if the pipe ran along the same axis in X and Y.  Take two pipes that fit 

together and rotate one 90°; this leaves two surfaces that have noticeable gaps in attachment while at the same JJFSW value. 

Similar to Signal Strength, shape naming was done by using the “ex2” and “fy2” terms of a 2nd order polynomial fit of the 

surface.  Additionally, examples were found in a 2nd order polynomial fit where the “dxy” coefficient was much larger than 

the “ex2” and “fy2” terms.  Considering only e and f coefficients a sample appearing “twisted” would fall into the 

complex/planar category.  A clear shape could be seen, similar to a saddle shape, but running diagonally across the sample.  

In the initial iteration of this concept the twist factor was used as an additional descriptor of the sample shape. 

For these original classifications a few examples were used to mathematically classify surface shapes.  Primary goals for 

shape naming and this case study include: 
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 Deciding on a realistic group of shape names, balancing complexity and specificity. 

 Experimentally finalizing mathematical thresholds for shape names. 

Prior to this paper the working mathematical concepts and shape name logic were as follows: [5] 

If  

𝐴𝐵𝑆(𝑒𝑚2) + 𝐴𝐵𝑆(𝑓𝑛2)

4 ∗ 𝑐𝑜𝑝𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦
< 35% 

then shape is Planar/Complex, if not then classify as follows 

𝑓𝑛2

𝑒𝑚2
< 2 𝑎𝑛𝑑 

𝑒𝑚2

𝑓𝑛2
< 2, 𝑤ℎ𝑒𝑟𝑒 𝑒 𝑎𝑛𝑑 𝑓 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝐵𝑜𝑤𝑙 

𝑓𝑛2

𝑒𝑚2
< 2 𝑎𝑛𝑑 

𝑒𝑚2

𝑓𝑛2
< 2, 𝑤ℎ𝑒𝑟𝑒 𝑒 𝑎𝑛𝑑 𝑓 𝑎𝑟𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝐷𝑜𝑚𝑒 

𝑓𝑛2

𝑒𝑚2
< 2 𝑎𝑛𝑑 

𝑒𝑚2

𝑓𝑛2
< 2, 𝑤ℎ𝑒𝑟𝑒 𝑒 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑓 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝑋 𝑆𝑎𝑑𝑑𝑙𝑒 

𝑓𝑛2

𝑒𝑚2
< 2 𝑎𝑛𝑑 

𝑒𝑚2

𝑓𝑛2
< 2, 𝑤ℎ𝑒𝑟𝑒 𝑒 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑓 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝑌 𝑆𝑎𝑑𝑑𝑙𝑒 

𝑎𝑏𝑠(
𝑓𝑛2

𝑒𝑚2
) > 2 = 𝑌 𝑃𝑖𝑝𝑒 

𝑎𝑏𝑠(
𝑒𝑚2

𝑓𝑛2
) > 2 = 𝑋 𝑃𝑖𝑝𝑒 

Additionally, twist was used as an additive term, as in “twisted” bowl shape, defined when 

𝑎𝑏𝑠(𝑑𝑚𝑛)

𝑎𝑏𝑠(𝑒𝑚2) + 𝑎𝑏𝑠(𝑓𝑛2)
> 0.35 

A good starting point for shape names, but with a more extensive case study, numerous improvements and refinement of 

these thresholds could be made.  In order to establish a “correct” shape, an experienced user went through the majority of the 

case study data and qualitatively assigned shape names based on the samples 3D surface rendering and, at times, 2D diagonal 

plot.  With this qualitative data the math was refined, reorganized, and renamed in an iterative process to maximize the match 

with the qualitative findings. 

The following steps were taken during the iterative, experimental method to adjust shape naming: 

 Using twist as an additional modifier was determined to be too confusing and complex, thus twist was made its own 

shape category, coming at the beginning of the beginning of the logic statements, since it was the only equation 

considering the “dxy” term.  Direction of twist is also differentiated, “Upward Twist” and “Downward Twist”. 

 Changed the pipe threshold to include absolute value in the logic statements and change the threshold from 2.0 to 

2.5, causing more bowl, dome, and saddle shape names, and fewer pipe results. 

 Adjusted weighting of pixel dimensions in shape definitions.  Lateral dimensions squared makes sense for the Signal 

Strength calculations, but with shape naming, squaring lateral dimensions put too much emphasis on the longer 

dimension in rectangular samples.  A linear relationship was attempted, but this didn’t place enough weight on 

lateral dimensions.  The best match with qualitative shape assignments became a 3/2 power used in pipe, 

bowl/dome, and saddle definitions. 

 Changed the “transition” threshold to 25%, as referenced in earlier sections.  Similarly, the threshold for the 

Planar/Complex was adjusted from 0.35 to 0.25.  The category was renamed to Complex/Flat. 

With these changes in place the final shape name logic is proposed as follows.  Note that order is critical to the logic: 
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If , 

𝐴𝐵𝑆(𝑑𝑚𝑛)

𝐴𝐵𝑆(𝑒𝑚2) + 𝐴𝐵𝑆(𝑓𝑛2)
> 0.35, 𝐴𝑁𝐷 𝑑 > 0;  𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝑈𝑝𝑤𝑎𝑟𝑑 𝑇𝑤𝑖𝑠𝑡 

𝐴𝐵𝑆(𝑑𝑚𝑛)

𝐴𝐵𝑆(𝑒𝑚2) + 𝐴𝐵𝑆(𝑓𝑛2)
> 0.35, 𝐴𝑁𝐷 𝑑 < 0; 𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑 𝑇𝑤𝑖𝑠𝑡 

𝐴𝐵𝑆(𝑒𝑚2) + 𝐴𝐵𝑆(𝑓𝑛2)

4 ∗ 𝑐𝑜𝑝𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦
≤ 25%; 𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥/𝐹𝑙𝑎𝑡 

𝐴𝐵𝑆 (
𝑓𝑛1.5

𝑒𝑚1.5
) ≥ 2.5; 𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝑌 𝑃𝑖𝑝𝑒 

𝐴𝐵𝑆 (
𝑒𝑚1.5

𝑓𝑛1.5
) ≥ 2.5; 𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝑋 𝑃𝑖𝑝𝑒 

𝐴𝐵𝑆 (
𝑓𝑛1.5

𝑒𝑚1.5
) < 2.5, 𝐴𝑁𝐷 𝐴𝐵𝑆 ( 

𝑒𝑚1.5

𝑓𝑛1.5
) < 2.5, 𝐴𝑁𝐷 𝑒 > 0, 𝐴𝑁𝐷 𝑓 > 0; 𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝐵𝑜𝑤𝑙 

𝐴𝐵𝑆 (
𝑓𝑛1.5

𝑒𝑚1.5
) < 2.5, 𝐴𝑁𝐷 𝐴𝐵𝑆 ( 

𝑒𝑚1.5

𝑓𝑛1.5
) < 2.5, 𝐴𝑁𝐷 𝑒 < 0, 𝐴𝑁𝐷 𝑓 < 0; 𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝐷𝑜𝑚𝑒 

𝐴𝐵𝑆 (
𝑓𝑛1.5

𝑒𝑚1.5
) < 2.5, 𝐴𝑁𝐷 𝐴𝐵𝑆 ( 

𝑒𝑚1.5

𝑓𝑛1.5
) < 2.5, 𝐴𝑁𝐷 𝑒 > 0, 𝐴𝑁𝐷 𝑓 < 0; 𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝑋 𝑆𝑎𝑑𝑑𝑙𝑒 

𝐴𝐵𝑆 (
𝑓𝑛1.5

𝑒𝑚1.5
) < 2.5, 𝐴𝑁𝐷 𝐴𝐵𝑆 ( 

𝑒𝑚1.5

𝑓𝑛1.5
) < 2.5, 𝐴𝑁𝐷 𝑒 < 0, 𝐴𝑁𝐷 𝑓 > 0; 𝑡ℎ𝑒𝑛 𝑠ℎ𝑎𝑝𝑒 = 𝑌 𝑆𝑎𝑑𝑑𝑙𝑒 

Following the order of this logic the 𝐴𝐵𝑆 (
𝑓𝑛1.5

𝑒𝑚1.5) < 2.5, 𝐴𝑁𝐷 𝐴𝐵𝑆 ( 
𝑒𝑚2

𝑓𝑛2 ) < 2.5 term can be removed from the Bowl, Dome, 

X Saddle, and Y Saddle definitions, but they are shown here to explain the concept, and define each shape individually. 

Case Study Results Summary with 3S Warpage and Shape Naming 

A single 3D surface plot for each shape name is shown, from the case study samples, in Table 2 below.   

Table 2. Shape Examples from Case Study 

Shape Name 3D Surface Plot 

Upward Twist 
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Downward Twist 

 

Complex/Flat 

 

Y Pipe 

 

X Pipe 
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Bowl 

 

Dome 

 

X Saddle 

 

Y Saddle 

 

The case study, covering 5 different sample types, included over 1500 warpage measurements, and thus a full list of all shape 

names is not included in this report for practicality.  Instead a count for each sample descriptor category is shown in Table 3, 

summarizing quantities of positive, negative, and transition surfaces, as well as a count for each sample shape. 
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Table 3. Summary of 3S Warpage and Surface Shapes for Case Study (sign convention corrected for orientation) 

Sample Type Pos. Neg. Tran. Flat Y Pipe X Pipe Y  

Saddle 

X  

Saddle 

Bowl Dome Down 

Twist 

Up 

Twist 

BoC, 1DP 104 75 120 3 84 53 35 61 15 26 9 13 

CoB, 2DP 24 31 62 8 8 2 0 2 29 56 7 5 

Large FBGA, 1DP 40 83 150 23 84 10 7 0 0 141 4 4 

MCP, 5DP 56 110 146 8 93 28 4 23 50 89 7 10 

PoP, 1DP 35 82 481 7 42 32 0 9 40 425 34 9 

Totals: 259 381 959 49 311 125 46 95 134 737 61 41 

 

New Warpage Data Deliverable Proposal 

So, why does this matter? 

As BGA and other package types become thinner, the propensity for the ill effects of warpage to impact the electronics 

industry increases dramatically, and can affect all package types with some detrimental impact.  Thinner and larger package 

types, translate to a shape-naming movement away from the normal “concave” and “convex” shapes.  This movement will 

demand that engineers involved with warpage analyses incorporate novel methods to not only predict these shapes, but to 

also assure a consistent approach to (1) identifying the shapes, and (2) describing with uniformity the shape profiles. 

Algorithms associated with the predictive nature of this method will also be required when developing the data crunching 

processes within the tools which are used in warpage analysis.  These algorithms will therefore be required to have 

consistency, such that the output can be readily used to effect changes to the manufacturing and engineering that may be 

associated with warpage improvement. 

There will also be a requirement for GR&R (gauge repeatability and reproducibility) methodologies for the tools used in 

these processes.  The GR&R topic will be approached in another paper, which will attempt to present a novel methodology 

when solving GR&R limitations within the warpage analysis field. 

Overall, the intent of the case study and analysis is to present to the user several improvements for warpage prediction, 

leading to: 

 Better predictions for warpage compatibilities between two contacting surfaces. 

 A clearer understanding of warpage shapes, and what can be accomplished with the improved methods for 

categorizing complex warpage shapes. 

 Better refinement with respect to the accuracy surrounding the “zero point” for complex shapes. 

 

Next Steps 

One of the more applicable approaches to this analysis would be to run our modeling and data through a Monte Carlo 

simulation.  Several benefits can be garnered from this approach:  innumerable model runs which can be associated with any 

one particular mathematical model, a multiplicity of model definitions can be reviewed quickly for application to the various 

complex shapes, no defined limit on the order of the algorithms, etc.  This will be a main next step, to define the Monte Carlo 

simulation parameters and run several iterations.  The process now is manually-iterative in nature, thus the Monte Carlo 

approach will afford us the opportunity to perform simulations at a greater speed with a greater span of coverage. 

Further analysis using newer PoP devices, can be used to compare the results to the complex shapes garnered thus far.  This 

addition to the model family will not only yield a larger span of influence for strength in our predictive power, but it will also 

allow us to develop “subsystem trending” and apply those trends to future package development activities. 

We also plan to invoke these improved algorithms within the Akrometrix product lines, so that the industry at-large can 

benefit from this increased accuracy concerning the analysis and comparison of complex shapes to warpage performance. 

Summary 

A large quantity of surface mount packages were measured by shadow moiré metrology to capture warpage levels, as the 

samples were heated through a reflow profile.  Found warpage data was used to improve upon new methods of 

communicating surface shape, when dealing with large quantities of data. 
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JEDEC Full Field Signed Warpage (JFFSW) is already an often preferred gauge over the industry standard signed warpage, 

used by many industry leading companies, as the critical gauge for package warpage.  This paper goes a step further in 

refining understanding of package shape, by introducing a new gauge, 3S Warpage.  3S Warpage not only classifies shapes as 

positive and negative, but also mathematically defines a third indeterminate category, labeled as a transition surface.  This 

added category is designed to limit confusion in summarizing package 3D surface shape with a single gauge. 

Packages from the case study are also assigned a shape name, established by newly established algorithms.  Shape naming 

algorithms were improved through an iterative process, when compared with qualitative shape assignments.  The shape name 

adds a new variable that can be tracked and correlated over time with surface mount attachment reliability and surface to 

surface mating.  These shape names can be used in establishing package trends and for further, future understanding of 

assembly yield based upon package warpage. 
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