

Survey of Circuit Board Warpage During Reflow

Michael J. Varnau

Delphi Electronics & Safety

8/20/07

- Overview of Goals & Objectives
- Overview of Product
- Initial Circuit Board Characterization (Screening Experiment)
- Detailed Circuit Board Characterization
 - Sampling / Conditioning Methodology
 - Warpage by Condition
 - » Whole Board
 - » PBGA only Area (30 mm square)
 - Multivariate Analysis: Temperature / Lot / Condition
 - » Whole Board
 - » PBGA only Area
- Statistical Prediction of Warpage
- Conclusions Future Directions

- Goal: Understand typical warpage characteristics of ECM Circuit Board during production solder reflow process
- Measurement Methodology
 - Tool: Akrometrix Thermal Shadow Moiré Interferometer PS400
 http://warpfinder.com/shadow-moire.htm
 - » Simulate production reflow profile
 - » IR Heating from bottom side of device being measured
 - Requires step height changes to be less than 0.010" for continuity of measurement
 - Board Asm / Substrate lightly coated with white paint to minimize contrast variation

Results

- The board assembly is too dense to get a meaningful measurement of board warpage
 - » Not possible to find a straight line across any part of board without crossing a component
 - Step height changes are typically greater than 0.010" causing "computational artifacts"
- Analysis Refocused on unpopulated Circuit Boards
 Results are summarized for various conditions

2007 Engine Control Module Board Assembly

Part: Asm 09 Profile: Mfg Best Pract SnPb_in.bt

3 D Surface Plot of Board Assembly at 30 °C

Coplanarity = 1322 microns

Board suspended on notched rail each end

- FR-4, type E67 Circuit Board
 - 1.2 mm (0.047") thick 6 layer Plated-Thru-Hole
 - 120 mm x 100 mm
 - ENiAu Pad Finish

Board K Surface Profile During Reflow

PBGA Pad Area Warpage vs Reflow Temperature

Board K PBGA Pad Area Warpage During Reflow

- Warpage of Circuit Board
 - Warpage is Significant
 - Variation is Large
 - Changes Run to Run (Gets Worse with Subsequent Runs)

- Circuit Boards were Sampled from Production
 - 7 Different days (Nov 29 thru Jan 19, 2007)
 - Taken directly off of Loader for Screen Printer
 - 9 Boards pulled sequentially from input stack
- Boards were lightly coated with high temperature white paint
 - Rustoleum: White High Heat Paint
 - Air dried 5 minutes
 - Oven dried 10 minutes @ 85 °C
- 3 Boards were run within 1 hour of production sampling
- 3 Boards were baked dry: 24 hours @ 125 °C
- 3 Boards were moisture soaked for 168 hours
 - Time is MSL Level 3 maximum condition for IC packages
 - 4 Groups at 26 °C / 75% RH (Manufacturing Required Practices for Facilities worst case)
 - 3 Groups at 30 °C /60% RH (J-STD-033B MSL Handling Requirements for IC Packages)

- Boards were subjected to Nominal Mfg Best Practices SnPb Reflow Profile
- Warpage measured / calculated at 13 temperatures
- Data for PBGA Pad Area was adjusted by 22 microns
 - Remove variation due to topology from solder resist / marking
 - Inherent measurement noise
 - Consistent with standard PBGA warpage analysis methodology

Multi-Variate Summary of Board Warpage

Warpage of Circuit Board versus Moisture Conditioning 3 Samples per Condition

◆ Max of Warpage Average of Warpage Min of Warpage

Multi-Variate Summary of PBGA Area Warpage

Min of Warpage

Delphi Microelectronics Center

PBGA Area of Board vs Moisture Conditioning 3 Samples each Condition

◆ Max of Warpage ■ Average of Warpage

Temperature Lot Condition

Statistical Prediction of PBGA Area Warpage

Conclusions of Circuit Board Warpage Analysis

- Warpage Varies Significantly by
 - Lot
 - Board
 - Moisture Content
 - Reflow Pass (Starting in Production Condition)
- Effect of Moisture Content Is Not Consistent
 - Effect is Significant within a Lot
 - Optimal Condition Varies by Lot, but generally baked dry is worse
- Warpage of PBGA Area is Large Enough to Impact PBGA Assembly Yields of Large BGAs
- Pb-Free Reflow profiles will cause more warpage
- This study was only single part number / single supplier

- Develop Standardized Characterization Methodology
 - Sampling Methodology
 - » Random versus Panel / Position
 - # Lots
 - * # Samples per Lot
 - Moisture Conditioning? Conditions
 - Characterization Temperatures
- Characterize Additional Part Numbers
- Characterize Pb-Free Reflow Profile
- Determine Acceptable Warpage Specifications
 - Solder Reflow Assembly Process Capability
 - » SnPb
 - » SAC
 - Allocate Total Warpage Allowance Between Board and BGA
 - » Optimize Board Cost / Supply / Industry Standards
 - » BGA Cost / Supply / Industry Standards