Resources

FAQs

Optical Measurement Techniques

How does Akrometrix measure warpage?

Akrometrix uses three optical full-field techniques to measure warpage: shadow moiré, fringe projection, and digital image correlation (DIC). The best choice for a particular application depends on a number of factors, but, in general, shadow moiré works best for samples with continuous surfaces, fringe projection for samples with step heights or small detailed features, and DIC where in-plane strain is required.

What size samples can be measured?

We routinely measure warpage on samples from 2 x 2 mm up to 600 x 600 mm

How sensitive are the measurements?

In our equipment, shadow moiré resolution is sub-micron for smaller samples (<=50 mm), which also sets the lower limit for accuracy and repeatability. Shadow moiré measurement resolution does not increase above 2.5 microns as the sample size increases. Fringe projection techniques scale linearly with field of view. Akrometrix Fringe Projection was designed for a warpage resolution of 5 microns for its 64x48mm field of view. DIC strain measurements are performed at a strain resolution of 150 microstrain.

What is the imaging resolution?

Imaging resolution relates to the lateral dimensions of the smallest feature that can be measured. This is a function of the camera resolution and the field of view. For a camera resolution of 2.0 Mpixels and a field of view 64 mm tall, imaging resolution for fringe projection is approximately 40 microns. For a 600 mm wide sample measured with shadow moiré, the value grows to 500 microns. For DIC, imaging resolution is typically an order of magnitude larger. Akrometrix has a variety of camera and lens combinations to optimize this value for a particular application.

How long does it take to acquire and analyze data for a measurement?

With full-field techniques, data for the entire sample is captured in each video frame, so data acquisition is independent of sample size. For DIC, data acquisition times are much less than 1 second. For fringe projection and shadow moiré, multiple image capture requires 1-2 seconds. Analysis typically takes a few seconds more. For example, minimum time between measurements during a temperature profile is set at 5 seconds.

How is the data presented?

The resulting data from a full-field method is a matrix of out-of-plane displacement values, one for each pixel location within the area analyzed. This matrix can be exported. It can be displayed in a variety of two- and three-dimensional graphical formats. It can be further analyzed to extract coplanarity values, strains, or other derived parameters, depending on the software.

 

Temperature Control

How is the sample heated and cooled?

We have equipment for heating the sample by infra-red radiant elements or forced air convection. Cooling is by forced air convection using either room temperature air or chilled air.

What is the available temperature range?

Normal operation is from room temperature to 300°C. With our Convection option, temperatures down to minus 50°C are possible.

How fast can the sample be heated or cooled?

This depends very strongly on the sample size, thermal capacity, thermal conductivity and other properties. Typically we can achieve 1-3 degrees°C per second, with the heating/cooling rate getting lower as the extreme temperature limits are approached.

If I use convective heating in the real process, should I use it in the warpage measurement?

The Akrometrix approach is to try to duplicate the effects of the heating/cooling cycle we are trying to simulate (including heating rates and uniformity), not the causes. As a practical matter, the behavior of a single chamber convective oven is very different from a convective reflow belt oven, so focusing exclusively on the mechanism of heating can be misleading.

What kind of temperature profiles can be run?

Akrometrix temperature profiling capabilities are very flexible, allowing for a wide range of simulation opportunities. Dynamic temperature profiling is a core capability of all our systems. Dynamic profiling enables both manufacturing and operating environments to be very accurately reproduced in the instrument. Reflow processing, cure cycles, harsh environment exposure, reliability temperature cycling – each are examples of the system capabilities.

 

Applications

 

How much warpage is too much?

This is an active area of study in the industry. Individual companies and industry standards committees are trying to set specifications based on empirical experience and theoretical calculations, taking into account sample dimensions, pad pitch, and other factors. We’ll keep you informed to the best of our abilities on the state of the art, through our regular website features.

Can multiple samples be measured at one time?

Yes, as long as all the samples fit within the camera field of view. Akrometrix software is designed to crop out individual areas of interest at the analysis stage. This includes multiple components in an oven going through the same thermal cycle, multiple parts in a JEDEC tray, or multiple BGA footprints on a single PCB.

Can you measure solder bump coplanarity? Solder paste volume?

Akrometrix Fringe Projection techniques can be used to measure solder bump coplanarity and solder paste height. However, the Akrometrix tools do not make volumetric measurements. Akrometrix has extensive experience at making such measurements during thermal cycles, but does not offer a product designed for high volume inspection of these features in a production environment.

Can you measure the height of a component relative to the substrate?

With shadow Moiré there are limits to the size of a discontinuous step that can be unambiguously characterized. This technique relies on “fringe counting” along a continuous path across the surface and abrupt discontinuities can cause problems in the analysis. Our Digital Fringe Projection (DFP) technique does not have this particular limitation and is capable of a depth of view around 20mm.

Can you measure glass? Ceramics? Silicon wafers?

All three optical techniques rely on diffuse light scattering from a clearly defined surface. Samples that are transparent (e.g. glass), translucent (e.g. some ceramics or polymer films), or specular reflectors (e.g. polished silicon wafers) don’t have natural optical properties compatible with these techniques. However, all these surfaces can be measured when coated with a thin layer of paint or unbonded pigment.

Can you measure coefficient of thermal expansion (CTE)?

Yes, with DIC, we can measure in-plane strain over temperature intervals up to 300°C, so CTE values are readily calculated. The normal in-plane strain resolution of 150micro strain translates to a precision of +/- 1.5 ppm/deg C over a 100 degree interval.

Can you measure stress?

No, our techniques measure displacement or strain. Stress may be calculated from this information with additional assumptions about materials properties and stress-strain relationships, but our software does not do this.